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Abstract

We show that a small perturbation periodic in imaginary time can be used to compute expec-
tation values of non-differential operators that do not commute with the Hamiltonian within the
framework of Quantum Diffusion Monte Carlo. Some results for the harmonic oscillator and the

helium atom are presented showing the validity of the proposed method.



I. INTRODUCTION

Quantum Monte Carlo (QMC) comprises different approaches for solving the Schrédinger
equation of a system using stochastic techniques. QMC usually represents the state under
study by means a set of positions in a 3/N-dimensional space with a probability distribution
proportional to the wave function. This representation combined with a trial wave function
Yr for a bosonic systems enables the calculation of the energy and expectations of operators
that commute with the Hamiltonian.

QMC techniques have been successfully applied to a great variety of system as nuclei [1],
molecules [2], atoms [3] and solids [4]. Nevertheless there are still open problems as the sign
problem for fermionic systems, and the unbiased calculation of expectations for operators
that do not commute with the Hamiltonian.

Since the introduction of the extrapolation method [5], much effort has been invested in
finding unbiased estimators of the expectation values of operators. They can be basically
classified in two different strategies. A general approach involves estimating the ratio of
the exact wave function % to ¢)r. This ratio combined with a “mixed estimator” gives an
approximation to 2. A second approach samples 1)? by correlating the configurations for
pairs of walkers.

The first strategy has been more extensively used and is based on the fact that /1y is
proportional to the asymptotic value of the total offspring of a walker after branching over
many time steps. [6]. One version is the “future walking method,” another the time corre-
lation method. The future walking method [7]-[9] can use tagging algorithms to calculate
the asymptotic number of descendants. The tagging process can be eliminated by keeping
a weight proportional to the progeny of every walker [10, 11] making the method simpler
to implement. This method has been has been successfully applied to some problems to
provide very accurate results [7] -[13]. The reptation Quantum Monte Carlo method [14]
is another method that is equivalent to the future walking method carrying weights in the
part concerning to the calculation of expectations. The time correlation method has been
applied with good results in the context of path integral Monte Carlo [15].

The second strategy is called Bilinear Quantum Monte Carlo [16, 17]. In this method,
the use of correlated pairs of walkers instead of walkers samples 12 by using the marginal

distribution of walkers. This method has been used within the context of Green’s function



Monte Carlo [16] and of the Diffusion Monte Carlo [17]. The method is also capable of cal-
culating differences of energy between very similar systems with small variances. Although
the results provided by this method are valuable, it remains more complicated than future
walking or time correlation methods.

We propose here a very simple alternative to the methods mentioned above to calculate
expectations of non—differential operators. We will see that adding an appropriate pertur-
bation periodic in imaginary time to the Hamiltonian of our system, makes it possible to
calculate the required results.

The structure of the paper is the following. In Section II, we present the theoretical basis
of our idea for calculating expectations in some detail showing how to implement it in a
diffusion Monte Carlo code. In Section III, we present the results for a harmonic oscillator

and for the Helium atom. Finally we offer our conclusions in Section IV.

II. DESCRIPTION OF THE METHOD

Let us recall how Diffusion Monte Carlo (DMC) works. For a system with Hamiltonian,

H |, the imaginary time Schrodinger equation will be

Lg} ") 4 H(R,7) = 0 (1)

We expand ¢(ﬁ, 7) in terms of the eigenfunctions of H, ¢k(]%), with eigenvalues Fy, k =
0,1,... labeled with By < Ej if k < I

o0

lb(éa T) = Z Ck(7)¢k(ﬁ)- (2)

k=0
We substitute into the first equation to obtain:

S ((7) + Bxen(r)) du(F) = 0 (3)

k=0

The solutions of the previous equations are
a(r) = qe ™7, (4)

with ¢; specifying the initial conditions. DMC is able to describe the ground state since for

imaginary time values much bigger that the relaxation time, 7o = 1/(E; — Ej)

eE‘”w(ﬁ, 7) D;z Co¢o(ﬁ) (5)



This means that asymptotically only the projection on the ground state survives.
Our goal is the calculation of the expectation value of a non-differential operator, A(R),
in the ground state of the system under study. To get this, we analyze the imaginary time

Schrodinger equation of a hypothetical system with Hamiltonian:
Hy = H + \(1)A(R) (6)

with A(7) function of the imaginary time, 7. Since we have in mind performing a perturbative

analysis in terms of H, we assume that this function is very small. Later we demonstrate that

this is not a limit to the accuracy of our method. The quantum Monte Carlo treatment of

perturbations independent of imaginary time has been studied in the paper by Caffarel and

Hess [18] where they obtain perturbative estimations of the interaction energy of molecules.
The imaginary time Schrodinger equation for this system is now

(R, T)

5+ HYA(R,7) + M) A(R)ua (B, 1) = 0 (7)

Using Eq. (2) for U,, renaming the coefficients c¢),(7) and substituting into Eq. (7), we

obtain:
o0

Y- (Au(n)o(B) + Brose(T) o (B) + exu(MAT) A(B)gi()) = 0 (8)

k=0

If we multiply the last equation by ¢; (ﬁ) and integrate over R we finally find:

Cl/\l(T)+ElC)\l(T)+)\(T)§C)\k(T)Alk ZO l=0,1,... (9)
where
Aw = [ dRei(B)AR)on(R) (10)

As we have already mentioned, we assume that A\(7) is very small, so we need solve Eq.(9)
considering only the leading order in the magnitude of A(7). This can be accomplished by
taking ¢y, (7) = cx(7) in all the terms multiplied by A(7). Under these assumptions, the

solution of the equations are
o0 - ’
ex(r) = ce BT — BT Z CkAlk/ dr' et Ei=E)T A(T) (11)
k=0 0

where, in order to keep the same initial conditions as when the perturbation is not present,

we have put A(0) = 0. The terms not considered in the previous solutions involve at least

A% (7)



If at very large imaginary time we subtract it from the unperturbed result, we obtain

efor (w(ﬁ, T) — wx(é, 7')) chAOk/ dr'elBo=E \ (71 (12)

—
T>T0

This difference has a somewhat complicated structure. In order to simplify it, we propose a

particular choice of A(7), namely
A(T) = A sin(wT) (13)

with \g a constant that controls the size of the perturbation. So for this choice of the

perturbation and in the long time regime, we can write:

o0

o , _, — cx Aok Aow coAgoA
o (D) = () s 0l (3 e = N eson))

We can see that the infinite sum has no dependence on imaginary time so we can eliminate
its contribution by subtracting the mean over some number of periods of the perturbation.
After that there is still a periodic component in imaginary time which contains the expec-
tation value of the operator we are interested in for the ground state of the unperturbed
Hamiltonian. Since we have subtracted the average, this periodic component has zero mean
but we can extract Agy using the root-mean-square deviation as we will discuss later.

The motivation for using a sinusoidal perturbation is simple: we want the average per-
turbation, reflected in an average weight to be zero, so that the perturbed and unperturbed
system do not diverge, with the perturbation always remaining small. Thus the Monte Carlo
statistics of the expectation or perturbation improve homogeneously as the calculation pro-
ceeds.

Both the future walking method carrying weights [10, 11] and the reptation quantum
Monte Carlo method [14] may be interpreted within this context as taking A(7) = Ao. It
can be argued that this choice of perturbation does not satisfy A(0) = 0 but this is not a
problem since we are interested in the limit of vanishing perturbation. For this choice of

perturbation, Eq. (12) will be:

e (Y(R,m) = ta(R,7)) — (15)

o0
ckAok Ao
T>T0

— o (R) (COAOO)\OT+ Z < Ee — Eq

where we can see that the difference of the wave functions diverges at long time. This
divergence can be eliminated by dividing by Aq7 so that the average is Ay in the long time

regime.



For practical applications using DMC, it is crucial to use importance sampling in order
to reduce the statistical fluctuations to a reliable level. That is, we solve the imaginary time
Schréodinger equation for

f(R,7) = " Tyr(Ryp(R, 7) (16)
with ¢ (R) a trial wave function for our system. The last equation can be solved in the
form:

f(R,7+dr) = [ dRG(R, R, dr)f(R,7) (17)
with G(R', R, dr) Green’s function exp(—H7), which for very small dr and for Hamiltonian
in the form

1 _
He:—§V%+L%R) (18)

can be approximated neglecting (d7)? [19] as

_ exp{_(R"—é—df(ﬁZ((Ji%T)Jrﬁ(é'))/z)z _ [EL(R‘)J;EL(E') — Erldr}

G(R,R,d 1
( 4L 7—) (27Td7')3N/2 ( 9)
Here N is the number of particles in the system, Er(R) is the local energy
. Hyp(R
By (B) = HYr(E) (20)
vr(R)
and F(R) is the drift force
(i) = Yt @1
vr(R)
To use Eq. (19), one begins with a walker at R and calculates its local energy. The

corresponding drift is calculated, generating
TF(R) (22)

One samples a displacement T randomly from the 3N Gaussian distribution with zero mean
and variance d7 and puts

Ry=R +T. (23)
According to Eq. (19)
R,=R — —F(R) (24)
so since the displacement is small one can approximate the new position as

L . dr o
R:m+§ﬂ&) (25)



The local energy is calculated at the new position to give the branching of the walker as

e (Br(R R)+EL(R'))/2—Er)dr (26)

When the same analysis is performed for the perturbed Hamiltonian, we observe that,
since A(R) is not a differential operator, the diffusion part (sampling and drifting) of the
walk is not modified as compared with the unperturbed system. The only modifications
caused by the perturbation are on the branching factor. This now becomes

o~ (BL(R)+BL () j2=Br)dr ,~(AR) [T M yar' + AR [T, Mr)ar') (27)
where we can see that in addition to the branching factor of the unperturbed system, there
is an extra branching that derives from the perturbation. The idea is to perform a walk
for the unperturbed system and to store separately an accumulated weight that reflects one
minus the branching caused by the perturbation for every walker. We can accumulate this
quantity and then for our choice of perturbation take the limit of vanishing perturbation.

The branching caused in one step for a walker is:
By (R, By 7, dr) = e dow(BR) (28)

where we have separated \g and we have defined
o T+dT

N T+dT /2 o
w(B,B) = AR) / sin(wr')dr’ + A(R) / o, ST (29)

We examine the information carried by the walker R' after the first step. This is 1 —

By, (R, R';0,dr). We can divide this by Ao and then take the limit Ay — 0, yielding

pa— > _’I'
lim 1— By, (R, R;0,dr)
Ao—0 Ao

=w(R,R) (30)

If in the following step, the walker becomes R". the quantity to be carried is now 1 —
B, (R, R0, dT) By, (R", R dr, dr). Again dividing by Ao, we can take Ay to zero obtaining
w(R, R') + w(R',R"). From this, we see that we can calculate exactly the limit of small
perturbations if, instead of multiplying the B), and subtracting it from one, we simply sum
the corresponding w. So if walker EO becomes ﬁk after k = 1,...,n steps the accumulated

quantity to be carried by én is

W ( Rn,ndT = Zw R, 1,Rk (31)
k=1
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If we take the mean of this quantity over the entire random walk for all the walkers in
the population, we obtain a periodic function of imaginary time. This function is the DMC
counterpart of Eq. (14) divided by coqﬁo(ﬁ))\o. In order to extract Agy from this, we must
first subtract the mean with respect to imaginary time for a certain number of periods and
calculate their standard deviation. This will be A/ V2w.

The possibility of carrying out the exact limit of small perturbations is an important
simplification for our method since there is now no question whether )\q is small enough to
satisfy our analysis. Our perturbation has therefore only one free parameter, w. Another
fact that reduces the time of computation of our method is that we can use the same walk
to calculate different expectations by simply storing separately the corresponding weights
of the operators under study. That is, we do not have to make a separate walk for every

expectation to be calculated for the system.

III. RESULTS

We begin this section discussing some results for the harmonic oscillator. This system

has a Hamiltonian that, using reduced units [17], can be written as:
1 15
H=-V%+_-R’ 32
2 B + 2 (32)

We have first applied our method to this system for two reasons: its simplicity and the

fact that its time-dependent Green function is analytically known [20]. This has the form:

oL 1 N/2 32 312 D . p!
G(F, B, dr) = (7) exp( R+ R” R ) (33)

27 sinh dr " 2tanhdr = sinhdr

with N the number of dimensions of the system which can have any value. If we use as
importance function

yr(R) = e73oF (34)

the time—dependent Green function becomes:

o N/2 B _~1R) o\ N/2 B
G(R, R,dr) = (ﬁ) exp —% (%) exp (M) (35)

where we have used as Er = N/2 the exact energy of the ground state and have defined
B~ = sinh dr with
v = cosh dr + asinh dr (36)



In the Green function formula, we can clearly see the sampling and the branching parts.
The sampling part is a Gaussian with mean ’y‘lﬁ and variance (. Since o = 1 is the exact
solution, we can also see that in this case the branching is unity, independent of the position
of the walker.

In our first test for our method, we have used as operator A(ﬁ) = R2. The virial theorem
tells us that < B2 >= N /2. Using the exact Green’s function for the harmonic oscillator
allows us to go beyond the short-time limit. We have set NV = 1 and have used d7 = 0.1,
w = 0.01 and populations of 8000 walkers and generating 10 blocks of 100000 steps. First
we have calculated with o = 1. If we calculate, the mean of the accumulated weights caused
by the perturbation, we get 0.5111(4). We can see that there is an important bias in this
result. This bias can not be due to the time step since we are using the exact Green function
nor to the fluctuations in the population size since this is constant. This bias is caused by
the influence of the other states in the perturbed ground state as was discussed following
Eq. (14). Accordingly, we subtracted the mean over twenty periods around every step; the
standard deviation of the weights now gives 0.49986(32). This result is consistent with the
exact value of 0.5.

It is known that if the trial function is the exact ground state wavefunction, the mixed
estimator would provide the exact expectation value even for operators that do not commute
with the Hamiltonian. Since this is just the case of the previous result, a possible criticism
to our example is that we are simply getting the result provided by the mixed estimator. We
can demonstrate that this is not the case by simply using a different value of the parameter
«. Here, it is possible to calculate exactly the value of the mixed estimator of the operator,
1/(1 + o). For oo = 0.95 the mixed estimator is 0.513. In the same conditions of the first
calculation and after subtracting the mean, we present in Table 1 the results for different
populations. They show that we find the exact expectation value instead of the mixed
estimator value. Since we have carried out different calculations and we have always obtained
expectations bigger than 0.5, we can conclude that there is a small finite population bias.
The result with oo is an extrapolation assuming that the finite population bias is proportional
to N, ! and is consistent with the exact value.

A second test of the validity of our method involves the helium atom. In the infinite



nuclear mass approximation, this has a Hamiltonian

1_, 2 2 1
H=—Vi-—— 24+ — (37)

2 T T2 T12

with B = (71, 7). This Hamiltonian has singularities in the potential at the nucleus and
when the two electrons coincide. The use of importance sampling is crucial. We have used
a very simple trial function for this case that incorporates Kato’s cusp conditions [21]. This

1s:

- 1
br(R) = exp (-2(7«1 Fro) + §r12) (38)
which provides a drift force ﬁ(ﬁ) = (=271 + 1/2F19, =279 — 1/2713) and a local energy
o 5 . . .
E(R):—Z+(7°1—7”2)‘T12 (39)

We have performed some calculations using this trial function. In all of them, we have
taken dr = 0.001 since, as in our propagator we are neglecting terms in (d7)®, we can
consider that we are very close to the zero time step limit. In order not to have a very
long block, we have calculated using w = 1. Taking into account that the size of the blocks
depends on wdr and this is 0.001 as it was in the case of the harmonic oscillator, we have
used blocks of 100000 steps. We show in Table 2 results for two calculations with population
size of 8000 and 64000 walkers for different non—differential operators. For completeness, we
also show the mean of the local energy using the classic mixed estimator.

If we compare the results provided by our method to very precise variational calculations
for the helium atom [22] that can be considered exact to the digits given, we see that
there are significant biases in all of them. We note that the bias becomes smaller as the
population becomes bigger which indicates that it is a finite population effect. So, using
the values shown in Table 2, and assuming that the bias is proportional to N, ', we have
extrapolated to an infinite population. The results from the extrapolation are also shown in
the Table under the oo symbol. These results are consistent with the accurate variational

results showing again the validity of our method.

IV. CONCLUSIONS

We have shown that the use of a periodic perturbation on imaginary time multiplied by a

non—differential operator permits the straightforward calculation of the expectation of that
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operator in the ground state of the system under study within the framework of DMC. We
have applied this method to the harmonic oscillator and to the Helium atom verifying its

validity.
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Tables

Population < R? >

8000 0.5011(8)
32000 0.50003(30)
oo 0.4997(7)

TABLE I: Twice the potential energy results for the monodimensional harmonic oscillator with

different populations. The exact result is 0.5.

Population 8000 64000 oo  Exact

E -2.90346(18) -2.90368(11) -2.9037(1) -2.9037

<V > -5881(22) -5.8225(49) -5.814(9) -5.8074

<r7t>  1737(15

)
)
)
<ri>  0.950(6)  0.9305(9 0.929
)
)

0.943(2) 0.946

) )
) )
1.6948(17) 1.689(4) 1.688
) )
0.9459(9) )

) )

(

(

(
( 0.928(2

<rg > 0.964(4 (
( (3) 1.422

1.422(3

<rp>  1451(7)  1.4258(17

TABLE II: Some results for the helium atom for different populations compared to the exact (in

the digits shown) variational calculation from [22]. All the calculations, use w = 1.
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